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Comparing the Effectiveness of
Dynamic Treatment Strategies Using
Electronic Health Records: An
Application of the Parametric g-Formula
to Anemia Management Strategies

Yi Zhang, Jessica G. Young, Mae Thamer, and Miguel A. Herndn

Objective. To compare the effectiveness of dynamic anemia management strategies
by applying the parametric g-formula to electronic health records.

Data Source/Study Setting. Patients with end-stage renal disease from the US Renal
Data System who had congestive heart failure or ischemic heart disease and were
undergoing hemodialysis in outpatient dialysis facilities between 2006 and 2010.
Study Design. We explicitly emulated a target trial of three erythropoietin dosing
strategies (aimed at achieving a low, middle, or high hematocrit) and estimated the
observational analog of the per-protocol effect.

Results. Of 156,945 eligible patients, 41,970 died during the 18-month follow-up.
Compared to the low-hematocrit strategy, the estimated risk of death was 4.6 (95% CI
4.4-4.9) percentage points higher under the high-hematocrit strategy and 1.8 (95% CI
1.7-1.9) percentage points higher under the mid-hematocrit strategy. The correspond-
ing risk differences for a composite outcome of death and myocardial infarction were
similar.

Conclusion. An explicit emulation of a target trial using electronic health records,
combined with the parametric g-formula, allowed comparison of real-world dynamic
strategies that have not been compared in randomized trials.

Key Words. Parametric g-formula, causal inference, target trial, comparative
effectiveness research

Comparative effectiveness research evaluates health outcomes in a particular
population under two or more different treatment strategies. The strategies
that are compared can be baseline interventions, which happen only at a single
point in time (e.g., immediate surgery), or strategies that are sustained over
time (e.g., take 75 mg of aspirin every day for the rest of your life). Sustained
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treatment strategies are static when all treatment decisions over the follow-up
period are predetermined at baseline (as in our aspirin example) and dynamic
when treatment decisions at each time during the follow-up depend on time-
evolving patient characteristics. The most common treatment strategies for
the care of persons with chronic medical conditions are dynamic. For exam-
ple, patients on dialysis receive recombinant erythropoietin or epoetin to treat
their anemia, with the dose adjusted over time according to both prior epoetin
dose and hematocrit or hemoglobin levels (laboratory values which measure
the extent of anemia).

In an ideal world, the comparative effectiveness of dynamic treatment
strategies would be evaluated in randomized trials. In practice, however, deci-
sions about dynamic strategies must often be based upon observational analy-
ses of existing health care databases. These observational analyses can be
viewed as an attempt to emulatea pragmatic clinical trial that we would like to,
but cannot or will not, conduct. We refer to this trial as the target trial (Herndn
and Robins 2016).

When comparing dynamic treatment strategies in either a target trial or
an observational analysis that attempts to emulate one, patients and clinicians
are often interested in estimating the effect of following the treatment strate-
gies specified in the protocol of the target trial—the per-protocol effect
(Herndn and Robins 2016). Generally, estimating the per-protocol effect
requires adjustment for pre- and postbaseline prognostic factors that affect
adherence to the protocol and/or loss to follow-up (Herndn, Hernandez-Diaz,
and Robins 2013; Murray and Herndn 2016).

Conventional statistical methods, however, cannot appropriately adjust
for confounding due to postbaseline prognostic factors that affect treatment
levels and are, themselves, affected by past treatment, for example, hematocrit
when comparing dynamic strategies for epoetin. In contrast, g-methods
(Robins and Herndn 2008; Petersen et al. 2014) were specifically designed to
handle time-varying confounders affected by previous treatment. A g-method
that can be particularly useful for estimating the per-protocol effect of com-
plex dynamic strategies on continuous treatments (e.g., dose) in either
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randomized trials with noncompliance (imperfect adherence to the strategies
specified in the protocol) or in observational studies is the parametric
g-formula (Robins 1986).

The goal of this study is to provide a step-by-step description of the com-
parison of dynamic strategies using electronic health records. First, we specify
the protocol of the target trial, including the statistical analysis plan that can
account for postbaseline confounding due to noncompliance and/or loss to
follow-up in estimating the per-protocol effect. Second, we describe how to
emulate the target trial via an application of the parametric g-formula using
electronic health records. As a case study, we compare the effect of dynamic
epoetin dosing strategies on the survival of hemodialysis patients with cardiac
disease, but the methods described herein can be applied to other comparative
effectiveness research questions involving dynamic treatment strategies.

METHODS

Our target trial is an updated version of the Normal Hematocrit Study (NHS;
Besarab et al. 1998), a randomized controlled trial of patients with cardiac dis-
ease who were undergoing hemodialysis and receiving epoetin between 1993
and 1996. The patients were assigned to one of two anemia management
strategies: aiming at a normal hematocrit of 42 percent or aiming at a lower-
than-normal hematocrit of 30 percent. The trial was terminated early because
patients who were randomized to the normal hematocrit strategy had
increased mortality and myocardial infarction. Subsequent randomized trials
among chronic kidney disease patients showed that pursuing normal or near-
normal hematocrit values (39-45 percent) led to worse clinical outcomes than
pursuing lower hematocrit values or placebo (Driieke et al. 2006; Singh et al.
2006; Pfeffer et al. 2009). As a result, the most commonly used strategies in
clinical practice aim at hematocrit levels lower than 39 percent. However,
these strategies have never been evaluated in randomized trials of hemodialy-
sis patients.

Specifying the Protocol of the Target Trial

In this section, we specify the main components of the protocol of a target trial
to compare several dynamic anemia management strategies: eligibility crite-
ria, treatment strategies, outcomes and follow-up, causal contrasts of interests,
and analysis plan.
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Eligibility Criteria. Eligible patients are individuals with end-stage renal dis-
ease and congestive heart failure or ischemic heart disease in the previous
2 years who were undergoing hemodialysis in outpatient U.S. dialysis facili-
ties between 2006 and 2010 and had received epoetin therapy in the previous
month. The exclusion criteria are similar to those of the NHS study: severe
cardiac disability, percutaneous transluminal coronary angioplasty (PTCS),
or coronary artery bypass grafting (CABG) in the 3 months before the study
baseline; pericardial disease; and cardiac amyloidosis. Additionally, patients
are excluded if they were treated with darbepoetin use (an alternative drug
with different dosing frequencies) in the previous 3 months or missed dialy-
sis session for an entire month. Study baseline is defined as the first month
when all eligibility criteria were met.

Treatment Strategies. We consider three dynamic treatment strategies that are
consistent with those widely used in clinical practice, but that have never been
compared in randomized trials:

1. Low hematocrit: At each month, adjust dose of intravenous epoetin alfa
(EPO) to try and maintain hematocrit at 30-33 percent,

2. Mid hematocrit: At each month, adjust dose of EPO to try and main-
tain hematocrit at 33-36 percent, and

3. High hematocrit: At each month, adjust dose of EPO to try and main-
tain hematocrit at 36-39 percent.

To operationalize the implementation of these treatment strategies, we
consider the following dosing rule to try and stay within the prespecified hemat-
ocrit range: increase monthly EPO dose by exactly 15 percent when hematocrit
is below range, decrease the dose by exactly 15 percent when hematocrit is above
range, and do not change dose when hematocrit is within range.

In sensitivity analyses, we consider alternative versions of the dosing
rule in which monthly EPO dose is increased up to 9,000, 6,000, and 3,000
units when hematocrit is below the range for the high-, mid-, and low-hemato-
crit group, respectively; decreased to no <6,000, 3,000, and 1,000 units when
hematocrit is above the range for the high-, mid-, and low-hematocrit group,
respectively; and unchanged when hematocrit is within range.

Outcomes and Follow-Up. Similar to the NHS trial (Besarab et al. 1998), the
endpoints are a composite outcome including death and hospitalization for
myocardial infarction and all-cause mortality. Study subjects are followed from
study baseline until the outcome, censoring due to loss to follow-up, or
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administrative end of study (18 months after baseline), whichever occurs ear-
lier. A subject is censored upon first occurrence of a data anomaly (e.g., hemat-
ocrit value was not reported in the claim but EPO dose was administered),
darbepoetin use, or after a 30-day gap in outpatient dialysis or inpatient
claims.

Causal Contrast. The intention-to-treat effect is the effect of being assigned to
one of the three EPO treatment strategies at baseline regardless of whether the
strategies were actually followed. In the presence of nonadherence to the pro-
tocol, the intention-to-treat effect is less helpful for meaningful results to influ-
ence clinical decision making (Herndn and Herndndez-Diaz 2012). We
therefore focus our interest on the per-protocol effect, that is, the effect that
would have been observed if all subjects had adhered to their assigned
dynamic EPO strategy throughout the 18-month follow-up.

Analysis Plan. The parametric g-formula can be used to estimate the standard-
ized 18-month risks under full adherence to each treatment strategy in the ran-
domized trial (Robins 1986; Taubman et al. 2009; Lodi et al. 2016). The
validity of the method requires that the measured pre- and postbaseline covari-
ates are sufficient to control confounding and selection bias due to failure to
adhere and loss to follow-up, and that all models described below are correctly
specified. A detailed description of the parametric g-formula estimation algo-
rithm along with a formal discussion of required assumptions has been previ-
ously delineated (Young, Herndn, and Robins 2014). Here, we briefly review
the algorithm to estimate the 18-month death risk by the end of follow-up under
each strategy. The algorithm requires data on the time-varying treatments, the
baseline and time-varying covariates required to adjust for confounding and
selection bias, and the outcome. The steps of the algorithm are as follows.

Step 1: Fit regression models:

a. Fit separate regression models for treatment and each covariate
at month ¢ as a function of ¢ and past treatment and covariate his-
tory, restricted to those who survived and remained uncensored
through ¢ For example, we can summarize covariate history by
the baseline covariates and the two most recent values of the
time-varying covariates.

b. Fit a regression model for the probability of death at month tas a
function of tand past treatment and covariate history, restricted to
those who survived and remained uncensored through ¢
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Step 2: Simulation. For each strategy (denoted g, do the following n
times (for a “large” choice of n, possibly the sample size):

a. At each month ¢ simulate covariates and treatment using the esti-
mated model coefficients from Step la based on previously simu-
lated treatment and covariates under the strategy g through /-1
(values at baseline ¢ = 0 are not simulated but rather sampled from
the observed values).

b. Replace the simulated treatment value at ¢ with the value of treat-
ment that should be assigned according to strategy g based on
simulated values of treatment and covariates through —1.

c. Compute the discrete-time hazard of death at ¢ using the estimated
regression coefficients from Step 1b for each of the n simulated his-
tories through ¢ consistent with strategy g

Step 3: Compute risks. For each of the three strategies g.

a. For each of the n histories, use the estimated hazards from Step 2c to
compute the z history-specific 18-month risks by the end of follow-
up under strategy g.

b. Obtain the 18-month risk under strategy gin the study population
by averaging the n history-specific risks.

The effect measures (i.e., the 18-month risk ratios and risk differences)
can then be computed directly from the risk estimates under each strategy,
and 95% confidence intervals can be obtained by repeating the algorithm in
500 bootstrapped samples.

To evaluate the presence of gross model misspecification, the above
algorithm can be easily modified to simulate a population under no interven-
tion on treatment (EPO dose), the so-called natural course, and compare the
distribution of the simulated variables with the ones observed in the actual
population (Young et al. 2011).

Emulating the Target Trial Using Observational Data

After specifying the components of the target trial, we then try to emu-
late them using observational data collected and maintained by the
United States Renal Data System (USRDS). This administrative data-
base includes demographics and a detailed longitudinal record of uti-
lization, diagnoses, and procedures for all dialysis patients covered by
Medicare (Saran et al. 2015). Patient’s history of EPO dose and



1906 HSR: Health Services Research 53:3 (June 2018)

hematocrit values are recorded in monthly claims submitted by dialysis
facilities.

The “Researcher’s Guide to the USRDS Database,” available from
http://www.usrds.org, describes variables, data sources, collection methods,
and validation studies. We used the USRDS standard analytic files as of calen-
dar years 2012 and prior, which were the most recent available data for
researchers (as of December 2015). Table 1 delineates how each component of
the target trial protocol was emulated as close as possible using the USRDS.

Implementing the Parametric g-Formula Using USRDS Data. We estimated the
18-month risks, risk ratios, and risk differences under each treatment strategy
by applying the parametric g-formula algorithm described above to the
USRDS. We arranged the analytical dataset with one record per patient per
month, containing hematocrit value at the beginning of the month and aver-
age EPO dose per administration in the month (see Text S1 in Appendix SA2
for details on construction of analytical data).

Baseline covariates included age (<50, 50 to <60, 60 to <70, 70 to <80,
and >80 years), gender, race (black, white, other, or unknown), duration of
dialysis (<8, 8 to <27, 27 to <53, 53 to <89, and >89 months), cause of renal
failure (diabetes, hypertension, glomerulonephritis, and other), hypertension,
diabetes mellitus, peripheral vascular disease, cardiac-related hospitalization
for angina pectoris, congestive heart failure, ischemic heart disease, myocar-
dial infarction, coronary artery bypass graft, percutaneous transluminal coro-
nary angioplasty, baseline hematocrit (<27, 27 to <30, 30 to <33, 33 to <36, 36
to <39, and >39 percent; measured at beginning of month 0), baseline EPO
dose (<1,000, 1,000 to <2,200, 2,200 to <4,400, 4,400 to <8,700, and >8,700
units/administration; measured in the month prior to baseline), inpatient days
(0,1to <7, 7 to <14, 14 to <21, and >21 days), U.S. geographic region (North-
east [networks 1-5], Southeast [networks 6-8, 13, 14], Midwest [networks 9—
12], West [networks 15-18]), dialysis chain membership (three largest chains,
smaller chains, and nonchain facilities), and year of study entry (2006 and
2007-2011).

Time-varying covariates included inpatient days during the month
and the most recent value of hematocrit. Inpatient days was modeled as a
categorical variable (three categories: 0 days; 1-4 days; > 5 days) using
nested logistic regression models, and hematocrit was modeled using linear
regression. Because the hematocrit value is not available for months with
zero EPO dose in the USRDS, we only simulated hematocrit when the
simulated value of EPO was not zero; otherwise, we carried forward the
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last simulated value of hematocrit. EPO dose was modeled in two stages:
logistic regression for “dose >0” versus “dose = 0” in month ¢ and then a
linear regression for the mean of the log EPO dose among those records
with dose >0.

All the parametric g-formula models included an indicator for month
of follow-up, the baseline variables, categorized inpatient days, and
restricted cubic splines of the two most recent values of hematocrit (with
knots located at 27, 30, 33, 36, and 39 percent) and EPO dose (with knots
located at 50, 200, 500, 1,500, 3,000, 4,500, 6,000, 9,000, 12,000, 15,000
U/administration). All analyses were conducted with SAS 9.4 (SAS Insti-
tute, Cary, NC, USA) using the GFORMULA SAS macro available with
documentation at www.hsph.harvard.edu/causal/software.htm. Additional
details of implementation and related SAS codes are described in the
Appendix SA2.

RESULTS

Figure 1 depicts the selection process for the 156,945 eligible patients. Table 2
summarizes baseline demographics, clinical history, comorbidities, and ane-
mia management. The mean age was 64.7 years, dialysis duration 3.3 years,
EPO dose per administration 7,630 units, and hematocrit 35.3 percent; 53
percent were men, 60 percent were white, 96 percent had hypertension, 66
percent had diabetes, and 62 percent had congestive heart failure in the
2 years before baseline.

During the 18 months of follow-up (2,069,207 person-months), there
were 41,970 deaths and 30,119 censoring events. The observed 18-month risk
was 30.4 percent for death and 33.3 percent for the composite endpoint. The
parametric g-formula closely replicated these risks (29.9 and 32.9 percent,
respectively) and the mean of the covariates under no intervention (Figure S1
in Appendix SA2).

Table 3 shows the 18-month risks under the three EPO dosing strate-
gies. Compared to the low-hematocrit strategy, the estimated risk of death was
4.6 (95% CI 4.4-4.9) percentage points higher under the high-hematocrit strat-
egy and 1.8 (95% CI 1.7-1.9) percentage points higher under the mid-hemato-
crit strategy. The corresponding risk differences for the composite endpoint
were very similar. The survival curves under the three strategies are shown in
Figure 2.
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Figure 1: Flowchart of Eligible Patients, United States Renal Data System
2006-2012

552,126 patients undergoing outpatient hemodialysis between 2006 and 2011 (baseline)

‘

326,806 patients with CHF or IHD in previous two years
+90,528 had CHF hospitalizations but not IHD hospitalizations
+54,522 had IHD hospitalizations but not CHF hospitalizations
+126,359 had both CHF and IHD hospitalizations
420,132 had nonroutine ultrafiltration for CHF identified from outpatient claims
+32,420 had IHD identified from outpatient and physician/supplier claims
42,845 had both CHF and IHD identified from outpatient settings

Exclusions

-60,125 patients had no EPO therapy in previous month

-81,292 patients had less than 6 months of dialysis duration at baseline
-2,464 had MI in previous 3 months

-2,091 had PTCA in previous 3 months

-633 had CABG in previous 3 months

-9.457 had severe cardiac disability in previous 6 months

—* | -923 had pericardial disease in previous claim history

-95 had cardiac amyloidosis in previous claim history

-946 used darbepoetin in previous 3 months

-4,128 missed dialysis sessions for an entire month in previous 3 months
-5,802 had invalid hematocrit or EPO dose values in previous 3 months
-1,905 died at baseline month

169,861 patients excluded

156,945 patients met all eligibility criteria

,

30,119 censored (18,534 due to data errors, 8,775 due to gap, 2,810 due to darbepoetin use);
41,970 deaths; 46,014 composite events

The above effect estimates did not materially change when (1) more
time-varying covariates such as iron dose and the number of dialysis sessions
were included in the analysis; (2) instead of carrying forward previous hemat-
ocrit when hematocrit values were missing, we assumed an increase of 10 per-
cent or a decrease of 10 percent in the hematocrit value compared with the
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Table 2: Baseline Characteristics of 156,945 Eligible Patients, United States
Renal Database System 20062012

Characteristic Value
Patient demographics
Age (year; mean) 64.7
Male gender (%) 52.9
Race (%)
White 59.5
Black 34.8
Other/unknown 5.7

Patient clinical history (%)
Primary cause of renal failure

Diabetes 50.6
Hypertension 28.6
Glomerulonephritis 9.4
Other/unknown 11.4
Duration of dialysis (years) 3.3
Baseline inpatient days (mean) 1.3
Hypertension 96.4
Diabetes 66.4
Peripheral vascular disease 38.2
Angina pectoris 7.3
Congestive heart failure 62.0
Myocardial infarction 13.8
Coronary artery bypass graft 58
Percutaneous transluminal coronary angloplasty 9.6
Anemia management prior to baseline
Hematocrit (%, mean) 35.3
EPO dose (units/administration, mean) 7,630
Iron use (%) 64.1
Facility characteristics (%)
Geographic region
Northeast (Networks 1-5) 24.3
Southeast (Networks 6-8, 13, 14) 37.5
Midwest (Networks 9-12) 21.5
West (Networks 15-18) 16.7
Dialysis facility chain group
DaVita 31.3
Fresenius 32.7
DCI 4.1
Small chains 12.9
Nonchain 19.0

previous reported level; (3) we used one or three lagged measurements (in-
stead of two) to summarize covariate history; (4) we used different regression
fitting procedures for the continuous variables EPO dose and hematocrit; (5)
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Table 3: Risks of Death Only and of Death or Myocardial Infarction (MI)
Under Low-Hematocrit (30-33%), Mid-Hematocrit (33-36%), and High-
Hematocrit (36-39%) Treatment Strategies, United States Renal Database
System 2006-2012

18-month Risk
Outcome  Treatment Strategy*  Risk (%)  Risk Ratio 95% CI ~ Difference (%) 95% CI
Death*  High hematocrit 32.1 1.17 1.16 1.18 4.63 442 491
Mid hematocrit 29.3 1.06 1.06  1.07 1.77 1.65 1.92
Low hematocrit 27.5 1 (ref.) 1 (ref)
Death High hematocrit 35.1 1.15 1.14  1.16 4.60 4.35 4.83
orMI"  Mid hematocrit 32.3 1.06 1.05 1.06 1.76 1.62 1.89
Low hematocrit 30.5 1 (ref) 1 (ref)

*41,970 deaths; 18-month risk of death: 30.2% (observed), 29.9% (simulated).

46.014 composite events of death and MI: 18-month risk of death: 33.1% (observed), 32.9%
(simulated).

CI, confidence interval.

we changed number and location of knots for cubic splines; (6) we changed
the arbitrary order in the fitting of models in Step la (see Text S2 in
Appendix SA2); (7) EPO dose per week was modeled instead of dose per
administration; and (8) EPO was imputed throughout duration of hospital stay
(Zhang et al. 2009).

DISCUSSION

We used observational data from the U.S. Renal Data System to compare three
dynamic anemia management strategies that have not been compared in ran-
domized trials. Our g-formula estimates suggest that targeting a low hematocrit
of 30-33 percent reduces the risk of death, compared with targeting higher
hematocrits, in individuals with cardiac disease undergoing hemodialysis.

Our findings support current FDA recommendations that the lowest
possible EPO dose should be used to achieve a hematocrit of 30-33 percent
for dialysis patients. They are also consistent with randomized trials in non-
ESDR patients, which have consistently shown that patients assigned to
higher hematocrit levels (by receiving more EPO) did not have better
outcomes, or had worse outcomes, than those assigned to lower hematocrit
levels.

In contrast, several observational studies (Ma et al. 1999; Collins et al.
2001) found that higher hematocrit values were associated with better patient
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Figure 2: Survival Curves and Myocardial Infarction (MI)-Free Survival
Curves under the Low-Hematocrit (L-Hct), Mid-Hematocrit (M-Hct), and
High-Hematocrit (H-Hct) Strategies, United States Renal Database System
2006-2012 [Color figure can be viewed at wileyonlinelibrary.com]
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outcomes, which were used as evidence for erstwhile EPO treatment guideli-
nes (NKF-k 2001). However, these associations may simply indicate that
patients with higher hematocrit values are healthier in ways not adequately
adjusted for in the analysis. Our observational study adjusts for baseline and
postbaseline confounders using the parametric g-formula and explicitly
describes the protocol of a target trial so that, unlike previous observational
studies, we compare EPO dosing rules rather than observed hematocrit
levels.

The parametric g-formula has been previously applied to compare
dynamic treatment strategies, including lifestyle interventions (Taubman et al.
2009; Danaei et al. 2013; Garcia-Aymerich et al. 2014; Lajous et al. 2013) and
clinical interventions (Young et al. 2011; Edwards et al. 2015; Lodi et al.
2015). However, none of these applications of the parametric g-formula were
based on a database of health claims. Our study demonstrates the opportuni-
ties afforded by alarge ESRD claims database to compare dynamic treatment
strategies that are unlikely to be included in randomized trials. However, a
valid application of the parametric g-formula to these datasets requires two
critical assumptions.
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First, the validity of the estimates relies on the assumption that the avail-
able covariates are sufficient to control for confounding and selection bias
(Herndn and Robins 2006; Robins and Herndn 2008; Daniel et al. 2013). We
believe that this assumption approximately holds in our analysis because the
USRD includes longitudinal data on hematocrit value, which is the driving
factor of EPO dosing. In general, researchers considering a database for com-
parative effectiveness research need to carefully evaluate whether longitudinal
data on treatment, confounders, and outcome are adequately recorded.
Second, the validity of the estimates relies on the assumption that models for
the outcome, treatment, and confounders are correctly specified at each
follow-up time. We conducted several sensitivity analyses and found our
results generally robust to changes in modeling assumptions.

To increase robustness of analysis, when possible, we also recommend
conducting analyses that rely on a different g-method. For example, we previ-
ously used inverse probability (IP) weighting (Cain et al. 2010; Zhang et al.
2014) to compare dynamic EPO dosing strategies. Compared with the
parametric g-formula, IP weighting relies on fewer modeling assumptions and
is not subject to the so-called g-null paradox, which may lead to rejection of
the null hypothesis of no treatment effect even when the null hypothesis is true
(Robins and Wasserman 1997). The g-null paradox is not an important con-
cern for our study because previous experimental studies suggest that there
are indeed differences between EPO dosing strategies (Besarab et al. 1998;
Singh et al. 2006; Pfeffer et al. 2009).

Yet the parametric g-formula has several advantages over IP weighting
for the comparison of dynamic treatment strategies. First, the parametric g-
formula offers more flexibility to compare clinically relevant strategies. Our
previous IP-weighted analysis (Zhang et al. 2014) compared EPO dosing
strategies under which EPO dose is increased somewhere between 10 and 25
percent when the hematocrit is below range, decreased somewhere between
10 and 25 percent when the hematocrit is above range, and changed some-
where between a 10 percent decrease and 10 percent increase when the
hematocrit is in range. IP-weighted estimates from this analysis can be inter-
preted as effects of random dynamic strategies (Taubman et al. 2008), that is,
strategies under which individuals receive a dose value randomly drawn
from a distribution. Random assignment rules are not natural for clinical
practice. In contrast, our current g-formula estimates can be interpreted as
effects of deterministic dynamic strategies, that is, strategies under which
individuals receive a fixed dose (Taubman et al. 2008). This reflects what a
physician will realistically do in practice (Young, Herndn, and Robins 2014).
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Second, IP-weighted estimates may be unstable when treatment is continuous
or certain treatment values are rare (Robins and Herndn 2008).

The trade-off for the greater clinical relevance and stability of the para-
metric g-formula estimates is a heavier reliance on modeling assumptions, as
discussed above. Doubly robust g-methods (e.g., targeted maximum-
likelihood estimation [Petersen et al. 2014]) that, in theory, combine the
strengths of IP weighting and the g-formula are currently under development.

In conclusion, we described how to specify, emulate, and analyze a tar-
get trial to compare dynamic dosing strategies via an application of the para-
metric g-formula to a large health care database. Our study can help guide
decision making by patients, clinicians, and policy makers, as well the design
of future randomized trials.
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